
 

Monte, Puna and High Andes 

Collection 2 
Version 1 

 
General coordinator 

Ana Eljall 

 

Technical coordinator 

Hernán Dieguez 

 

Technical support 

Paula Torre Zaffaroni 

Leticia Castro Sardiña 

 

 

Team 

 

Abril Barrios​
Carolina Ramos​

Eduardo Jorge Ocher​
Gonzalo Dieguez Gaviola​

Jazmin Suarez​
Joaquin Asad​

Jose Volante​
Luna Schteingart​

Mariana Guerra Lara​
María Luisina Torre Azzaroni​

Silvina Alday​
Sofia Antonena 

 

 

 

 

 

 September 2025 



1. Introduction 

1.1. Scope and content of the document 

The objective of this document is to describe the theoretical basis, justification and 

methods applied to produce annual maps of land use and land cover (LULC) of the Monte, 

Puna and High Andes MapBiomas initiative from 1985 to 2024 (Collection 2). This 

collection was integrated into Collection 2 of Argentina to generate a characterization of 

the whole country. The document presents a general description of the satellite image 

processing, the feature inputs, and the step-by-step process carried out to obtain the 

annual classifications. 

 

1.2. Overview 

The MapBiomas initiative combines people, algorithms, satellite information and 

large-scale processing in a methodology that has revolutionized the operational large-scale 

generation of LULC maps. MapBiomas provides an ideal environment to enhance and 

share skills and abilities by collaborators from different locations and perspectives but with 

the mutual core value of learning by doing. Thanks to Google Earth Engine and open 

source technology it was possible to access and process large-scale datasets of satellite 

imagery such as the one generated by the MapBiomas project. 

MapBiomas collections aim to contribute to developing a fast, reliable, collaborative, and 

low-cost method to process large-scale datasets and generate historical time series of land 

use and land cover annual maps. All data, classification maps, codes, statistics, and further 

analyses are openly accessible through the MapBiomas Platform. This is possible thanks to 

i) the Google Earth Engine platform, which provides access to data, image processing, 

standard algorithms, and the cloud computing facilities; ii) the freely available Landsat 

time-series dataset; and iii) the MapBiomas collaborative network of organizations and 

experts that share knowledge and mapping tools. MapBiomas maps are an evolving 

product and subsequent collections will be available in the future. 

 

1.3. Region of Interest 

The Monte, Puna and High Andes initiative was created to produce annual land use and 

land cover (LULC) maps for the Argentine territories west of Mapbiomas Chaco and 

Pampas and north of Patagonia. The region of interest encompasses a total of 495,123 

km², including most of the Puna, Low and High Monte, and High Andes ecoregions, as well 

as the northern part of the Patagonian steppes (Burkart et al., 1999; Olson et al., 2001). 



The study area was divided into 11 subregions to minimize confusion between samples 

and classes, and to ensure a more balanced distribution of samples and results (Figure 1). 

  

Figure 1. Region of interest of Monte, Puna and High Andes initiative. 

 

1.3.1. Monte 

East of the Andes lies the Monte ecoregion, encompassing arid and semi-arid steppes. This 

vast ecoregion is dominated by shrubs and perennial grasses, well-adapted to the region's 

low rainfall and hot summers. A network of rivers and streams originating in the Andes 

provides vital water sources for the Monte's socio ecosystems. The Monte's arid steppes 

have traditionally been used for extensive livestock ranching, primarily sheep and goats. 



However, overgrazing can lead to desertification, posing a threat to the region's delicate 

ecological balance. Monte's aridity generally restricts intensive agriculture. However, 

pockets of intensive agriculture exist particularly near the foothills of the Andes where 

rivers provide a reliable source of water for irrigation. These areas might support 

vineyards, fruit orchards, alfalfa production, horticulture, pecan groves, walnut orchards, 

or other woody cultivated areas. Most towns and cities rely on oases or rivers for their 

water needs. 

 

1.3.2. Puna 

High up in the Andes, nestled between its peaks and foothills, lies the Puna, a vast plateau 

characterized by a cold, dry climate. It experiences frigid temperatures, strong winds, and 

intense solar radiation. Precipitation is scarce. The Puna's unique ecological conditions 

have fostered the development of a specialized ecosystem dominated by low-growing 

grasses, cushion plants, and dwarf shrubs. The Puna is an important source of freshwater, 

feeding rivers that flow eastward. The Puna's high-altitude steppes have long supported 

communities of indigenous herders who raise llamas, alpacas, and vicuñas for their wool 

and meat. The Puna is also rich in mineral resources, leading to mining activity. Some 

communities boast a long history of cultivation of small plots using water from rivers fed 

by glacial meltwater. Large-scale urbanization is also restricted by water scarcity. Existing 

towns and cities in the Puna rely on rivers or underground water sources for their needs. 

 

1.3.3. High Andes 

Nestled along the western edge of Argentina, the High Andes mountain range stretches for 

thousands of kilometers, forming a formidable natural barrier. Many of its imposing peaks 

exceed 6,000 m in elevation. The region is characterized by a harsh, high-altitude climate 

with frigid temperatures, strong winds, and significant variations in temperature 

throughout the day and the year. Precipitation is scarce, falling mainly as snow that 

accumulates on the peaks, feeding glaciers and contributing to the region's unique 

hydrological systems. The thin air and intense solar radiation pose challenges for most life 

forms. However, the High Andes ecosystem has adapted, harboring a variety of specialized 

plant and animal species, many of which are endemic to the region. Despite the harsh 

conditions, the High Andes have a long history of human use. Indigenous communities 

have adapted to the high altitude, practicing a transhumance lifestyle where they move 

herds of llamas and alpacas between seasonal pastures at lower and higher elevations.  

Mining for precious metals like gold and silver has a long history in the High Andes, but its 

environmental consequences are now raising growing concerns and require careful 



consideration. Some oasis pockets at lower elevations benefit from meltwater from 

glaciers and snowpack, allowing for small-scale agriculture. Urbanization is also limited 

due to the extreme conditions. Small settlements exist primarily to support mining activity 

or tourism. 

 

1.4. Enhancements Introduced in Collection 2 Compared to Collection 1 

Collection 2 improves upon Collection 1 through several key enhancements. First, a 

thorough qualitative revision of the training samples was conducted, ensuring that their 

thematic accuracy and spatial representativeness meet updated mapping standards. This 

was complemented by the application of a quantitative outlier filter to the original training 

samples from Collection 1, removing anomalous or inconsistent data samples and 

improving the overall reliability of the classification process. The legend was expanded to 

allow for a separation of woody vegetation classes, explicitly distinguishing forests from 

shrublands to provide greater thematic detail. Additionally, an urban class was 

incorporated, developed by a dedicated transversal working group that integrated 

information from multiple sources. Finally, the temporal coverage was extended to include 

data up to the year 2024, allowing for a more up-to-date representation of land cover and 

land use dynamics. 

 

2. Overview of methodological process 

The methodological steps of Monte, Puna and High Andes initiative Collection 2 are 

presented in Figure 2 and detailed below. Annual Landsat mosaics based on yearly periods 

and the spectral feature inputs derived from the Landsat bands (i.e., feature space) to run 

a random forest-based classification were generated by the MapBiomas Brazil team. The 

Monte, Puna and High Andes team defined the classes of land use or cover to be mapped 

(hereafter, map legend) and the subregions of the region of interest. Through visual 

interpretation and phenological signatures analysis by the whole team, temporally stable 

training samples were acquired for each class and subregion. The training data set was 

derived from the spectral feature inputs over the samples, and a pre-classification was 

generated with a random forest classifier. The pre-classification process was used to 

identify stable areas. Within these areas, stable samples were randomly selected through 

stratification, ensuring representativeness based on the relative area of each subregion. A 

new random forest classifier was run based on random, stratified, stable samples. 

Interpreters further collected complementary samples in areas or for classes where errors 

were evident, which were added to the stable samples for a new classification. Land 



use/land cover patterns were evaluated and corrected using reclassification rules designed 

specifically for classes and regions where errors were detected. Following that, spatial and 

temporal filters were applied to remove classification noise and stabilize the 

classifications.  

 

 

Figure 2. Methodological scheme of Monte, Puna and High Andes initiative Collection 2.  

 

3. Remote Sensing Data 



3.1. Landsat Collection  

The imagery dataset used in Monte, Puna and High Andes initiative Collection 2 was 

obtained from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic Mapper 

Plus (ETM+), and the Operational Land Imager and Thermal Infrared Sensor (OLI-TIRS), on 

board of Landsat 5, Landsat 7 and Landsat 8, respectively. The Landsat imagery collections 

with 30-pixel resolution were accessible via Google Earth Engine, and sourced by NASA 

and USGS. Monte, Puna and High Andes initiative Collection 2 has used Tier 1 from USGS 

and surface reflectance (SR), which underwent radiometric calibration and 

orthorectification correction based on ground control points and a digital elevation model 

to account for pixel co-registration and correction of displacement errors. The scenes were 

used for covering the entire region, where each of them is totally or partially within the 

area. For each year we used images from the best Landsat mission available: 

●​ 1985 to 1999 – Landsat 5 

●​ 2000 to 2002 – Landsat 7 

●​ 2003 to 2011 – Landsat 5 

●​ 2012 – Landsat 7 

●​ 2013 to 2024 – Landsat 8 

 

3.2. Landsat Mosaics 

Landsat cloud-free composites were obtained from images distributed throughout the 

whole year. The cloud/shadow removal script applied leverages Landsat’s own quality 

assessment (QA) band and the GEE median reducer. When used, QA values can improve 

data integrity by indicating which pixels might be affected by artifacts or subject to cloud 

contamination (USGS, 2017). In simple terms, the algorithm rejects values that are too 

bright (e.g., clouds) or too dark (e.g., shadows) and picks the median pixel value in each 

band for a specific year.  

 

3.3. Feature space 

The feature space for classifying the classes of interest for the Monte, Puna and High 

Andes initiative Collection 2 comprises a set of 31 variables including the original Landsat 

bands, spectral indices, and fractional and textural information derived from these bands 

(Table 1). The variables of the feature space were the same for all subregions.  

Reducers (i.e., temporal aggregation algorithms) were used to generate temporal features 

such as: 

● Median - Median of the NDVI pixel values considering all the images of each year. 



● Median_dry = median of the lower quartile of the NDVI pixel values. 

● Median_wet = median of the higher quartile of the NDVI pixel values. 

● Amplitude = amplitude of variation of the index over each year. 

● stdDev = standard deviation of all pixel values over each year. 

 

Table 1. List of spectral bands, fractions and indices comprising the feature space.  

Variable Description 

Slope Derived from the SRTM digital elevation model. 

Green median texture Average green texture extracted from the monthly mosaic. 

GCVI median wet Median of the wet period of the green chlorophyll vegetation index. 

GCVI median Annual median green chlorophyll vegetation index. 

GCVI median dry Median dry period green chlorophyll vegetation index. 

Blue median Annual median of the blue band. 

EVI2 median Annual median of the Enhanced Vegetation Index. 

Green median Annual median of the green band. 

Red median Annual red band median. 

NIR median Annual median of the near-infrared band. 

SWIR1 median Annual median shortwave infrared band 1. 

SWIR2 median Annual median shortwave infrared band 2. 

GV medlan Median of Green Vegetation. 

GVS median Median of the Green Vegetation Shade index. 

NPV median Median of Non-Photosynthetic Vegetation. 

Soil median Median Soil Fraction. 

Shade median Median shade fraction. 

NDFI median Annual median of Normalized Difference Fraction Index. 

NDFI median wet Median of the Wet period of NDFI. 

NDVI median Annual median of Normalized Difference Vegetation Index. 

NDVI median dry Median of Normalized Difference Vegetation Index dry period. 

NDVI median wet Median of Normalized Difference Vegetation Index wet period. 

NDWI median Annual median of Normalized Difference Water Index. 

NDWI median wet Median of Normalized Difference Water Index for wet season. 

SAVI median Median of Soil-adjusted Vegetation Index. 

SETI median Median of Savanna Ecosystem Fraction Index. 

NDFI stdDev Annual standard deviation of the Normalized Difference Fraction Index. 

SEFI stdDev Annual standard deviation of Savanna Ecosystem Fraction Index. 

Soil stdDev Annual standard deviation of Soil fraction. 

NPV stdDev Annual standard deviation of Non-Photosynthetic Vegetation. 

NDWI amp Annual amplitude of Normalized Difference Water Index. 



 

4. Classification of LULC 

The production of the Collection 2, with land use and land cover annual maps for the 

period 1985-2025 in each subregion, included a) manually drawn polygons of LULC classes 

temporally non-variable, based on the visual interpretation of annual Landsat composite 

images and temporal behavior of spectral indices, b) stable samples generated from LULC 

preliminary classifications, c) balancing of samples based on areal representativeness of 

each class, d) collection of complementary samples, e) annual LULC classifications, f) 

application of temporal and spatial post classification filters.  

 

4.1. Legend 

The supervised classification of the Landsat mosaics for Monte, Puna and High Andes 

initiative Collection 2 aimed to individualize a set of twelve land use and land cover classes 

(Table 2). The classes were carefully considered to ensure the accurate representation of 

the region's land cover types and involved the knowledge of the local experts for their 

selection. Urban areas were integrated via superposition, based on a product developed 

by a dedicated transversal working group. 

 

Table 2. Land use and land cover (LULC) categories considered for the classification of 

Landsat mosaics for the Monte, Puna and High Andes initiative. 

Legend  ID Description 

Closed forests 3 
Areas with natural vegetation dominated by trees, 

with a coverage greater than 65%. 

Open forests 4 
Areas with natural vegetation dominated by trees, 

with a coverage between 20 and 65%. 

Closed shrublands 66 
Areas with natural vegetation dominated by 
shrubs, with a coverage greater than 65%. 

Open shrublands 77 
Areas with natural vegetation dominated by 

shrubs, with a coverage between 20 and 65%. 

Sparse wooded shrublands 45 
Areas with natural vegetation dominated by 
shrubs, with a coverage between 5 and 20%. 

Grasslands 12 
Areas with natural vegetation dominated by 

herbaceous plants, where woody plant coverage is 
less than 20% or nonexistent. 

Flooded Grassland or 
Non-woody floodable vegetation 

11 
Areas with natural vegetation influenced by a 
shallow water table or dependent on flooding. 



Mosaic of agriculture and 
pasture 

21 

Areas with anthropogenic vegetation composed of 
a heterogeneous association, varying over time 

and space, including agriculture, pastures, 
vegetables, and fruit trees. This cover is typically 

small-scale and commonly found in irrigated areas, 
although not exclusively so. 

Woody Cultivated 9 
Areas covered by woody (trees or shrubs) 

anthropogenic vegetation. 
Non vegetated areas 25 Areas with vegetation coverage less than 5%. 

Superficial water 33 
Areas permanently covered  by water. It includes 

streams, rivers, ponds, and natural or artificial 
lakes. 

Ice and snow on surface 34 
Areas with permanent and superficial snow or ice 

coverage. It does not include debris-covered 
glaciers. 

Not observed 27 
Attributed to missing values, shadows, or other 
errors that may arise during the classification 

process. 
 

4.2. Classification algorithm, training samples and parameters 

Classifications were performed yearly, using a Random Forest algorithm (Breiman, 2001) 

available in Google Earth Engine, running 70 iterations (random forest trees). Stable 

training samples for each region were defined following a strategy of using random pixels 

for which the land use and land cover remained the same for at least 35 of the 40 years, 

so-named “stable samples”. The stable areas were identified through annual preliminary 

classifications trained with random pixels selected from manually drawn polygons. For this, 

false-color composites of the Landsat mosaics for all 40 years as backdrop and graphs with 

the temporal behavior of spectral indices per pixel were used to establish the LULC class.  

 

4.3. Preliminary classification 

From manually drawn polygons, a subset between 200 and 2000 pixels per class was 

randomly selected and used as training areas to classify each of the 40 years with the 

Random Forest algorithm, running 70 iterations. A total of 40 yearly preliminary 

classifications were obtained and the frequency with which a pixel was classified with the 

same LULC class was calculated to define the stable areas. 

 

4.4. Sample outlier filtering 



To identify the presence of outlier samples, we quantified the rarity of each one using the 

Isolation Forest algorithm on the attribute space defined by the 33 synthetic bands used to 

train samples. The algorithm progressively isolates observations in random decision trees, 

and those that require fewer splits to become isolated obtain a lower score, indicating 

greater rarity. Since the class distribution is not homogeneous across zones—particularly 

in areas where certain covers are very poorly represented—we grouped the data into 

three broad regions (metaregions) that combine several subregions: High Monte (6–8), 

Low Monte (9–11), and Puna and Andes (1–5). In this way, each sample is evaluated 

against a more representative regional distribution, avoiding biases related to the local 

scarcity of classes. Based on the scores, we applied a statistical rule to define the threshold 

that separates “typical” from “atypical” samples: using the skewness of the score 

distribution for each region–year–class combination, thresholds were set at 2%, 5%, and 

10% of the samples for sets ranging from more symmetric (skewness > –0.5) to less 

symmetric (skewness < –1), respectively. 

 

4.5. Stable samples  

The identification of stable areas to extract random pixels or “stable samples” was based 

on a criterion of minimum frequency aiming to ensure their confidence for use as training 

areas. Each pixel should be classified with the same LULC class at least 35 times in the 

period 1985-2024 to be considered as stable, i.e. a pixel should remain with that class for a 

minimum of 35 years to be eligible as a stable sample. A layer of pixels with a stable 

classification along the 40 years was then generated by applying such a threshold. A 

minimum of 200 samples was used for rare classes that do not cover at least 10% of the 

region area and a maximum of 2000 samples for the most abundant classes. 

 

4.6. Complementary samples 

The need for complementary samples was evaluated by visual inspection and by 

comparing the output of the preliminary classification with both Landsat and 

high-resolution images available in GEE. Complementary sample collection was also done 

by drawing polygons within the Google Earth Engine Code Editor. The same concept of 

stable samples was applied, interpreting the false-color composites of the Landsat mosaics 

for all 40 years for drawing polygons. Based on the knowledge of each region, polygon 

samples from each class were collected and the number of random points in these 

polygons were defined to balance the samples. 

 



4.7. Final classification 

Final classification was performed for every year, with subregions merged into three 

metaregions, employing both stable and complementary samples. All years used the same 

subset of samples and each classifier was run for the same mosaic of the year that was 

classified. 

 

5. Post-processing 

Due to the pixel-based classification method and the long temporal series, a list of 

post-classification procedures was applied. The post-classification process includes the 

remapping of certain areas where obvious errors were identified, and the application of 

gap-filling, temporal and spatial filters.  

 

5.1. Gap fill filter 

A no-data values (“gaps”) filter was applied. Because theoretically the no-data values are 

not allowed, it was replaced by the temporally nearest valid classification. In this 

procedure, if no “future” valid position was available, then the no-data value was replaced 

by its previous valid class. Therefore, gaps should only exist if a given pixel has been 

permanently classified as no-data throughout the entire temporal domain. 

 

5.2 Remapping 

In areas where obvious classification errors were identified, manual remapping was 

conducted. Additionally, pixels classified as water in areas where the slope exceeds 15° 

were reclassified as "Not observed," as this is a typical outcome of topographical shadows. 

 

5.3. First spatial filter 

The spatial filter overcomes the “salt and pepper effect” removing isolated pixels or 

groups of pixels. A mode filter was applied, by calculating the majority class in the direct 

neighbors of the focal pixel. It was based on the "connectedPixelCount" function. Native to 

the GEE platform, this function locates connected components (neighbors) that share the 

same pixel value. Thus, only pixels that did not share connections to a predefined number 

of identical neighbors were considered isolated and subject to the mode filter. In this filter, 

at least 11 connected pixels were needed to reach the minimum connection value. 

Consequently, the minimum mapping unit is directly affected by the spatial filter applied, 

and it was defined as 11 pixels (~1 ha). 



 

5.4. Temporal filters 

The temporal filter uses the subsequent years to replace pixels that have spurious 

transitions. The first process looks across a 3-year moving window to correct any value 

that changes in the middle year and changes back to the original class at the end year. This 

process was applied per class sequentially in the following order: [21, 77, 45, 9, 12, 11, 25, 

66, 4, 3, 33]. The second and third processes are similar to the first one, but encompass 4- 

and 5-year moving windows, respectively, correcting all years falling in between. Temporal 

filters were not applied to the Water and Snow classes, considering their inherent 

interannual variability. The moving windows were not applied either over 1985 and 2024, 

for which end-year filters were applied. The end-year filters look for areas that were 

classified differently in 1985 in comparison to 1986 and 1987 and then correct the 1985 

value. Also, these filters look for pixel values in 2024 that differ from its class in 2022 and 

2023. In these cases, if the class value in 2024 is not the same as that in 2022 and 2023, it 

is then converted to the class present in those years.  

 

5.5. Last spatial filter 

After applying the filters detailed above, a spatial filter with the same parameters as the 

first one was applied to remove potential spatial artifacts produced by the temporal filters. 
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