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1. Introduction
1.1. Scope and content of the document

The objective of this document is to describe the theoretical basis, justification and
methods applied to produce annual maps of land use and land cover (LULC) of the Monte,
Puna and High Andes MapBiomas initiative from 1985 to 2024 (Collection 2). This
collection was integrated into Collection 2 of Argentina to generate a characterization of
the whole country. The document presents a general description of the satellite image
processing, the feature inputs, and the step-by-step process carried out to obtain the
annual classifications.

1.2. Overview

The MapBiomas initiative combines people, algorithms, satellite information and
large-scale processing in a methodology that has revolutionized the operational large-scale
generation of LULC maps. MapBiomas provides an ideal environment to enhance and
share skills and abilities by collaborators from different locations and perspectives but with
the mutual core value of learning by doing. Thanks to Google Earth Engine and open
source technology it was possible to access and process large-scale datasets of satellite
imagery such as the one generated by the MapBiomas project.

MapBiomas collections aim to contribute to developing a fast, reliable, collaborative, and
low-cost method to process large-scale datasets and generate historical time series of land
use and land cover annual maps. All data, classification maps, codes, statistics, and further
analyses are openly accessible through the MapBiomas Platform. This is possible thanks to
i) the Google Earth Engine platform, which provides access to data, image processing,
standard algorithms, and the cloud computing facilities; ii) the freely available Landsat
time-series dataset; and iii) the MapBiomas collaborative network of organizations and
experts that share knowledge and mapping tools. MapBiomas maps are an evolving
product and subsequent collections will be available in the future.

1.3. Region of Interest

The Monte, Puna and High Andes initiative was created to produce annual land use and
land cover (LULC) maps for the Argentine territories west of Mapbiomas Chaco and
Pampas and north of Patagonia. The region of interest encompasses a total of 495,123
km?, including most of the Puna, Low and High Monte, and High Andes ecoregions, as well
as the northern part of the Patagonian steppes (Burkart et al., 1999; Olson et al., 2001).



The study area was divided into 11 subregions to minimize confusion between samples
and classes, and to ensure a more balanced distribution of samples and results (Figure 1).

’ Paraguay
a. Brazil
Loy ‘ Argentina

S Monte
[ Puna
High Andes
; ) Patagonian steppe
tl§ q
)

280
&9 ¥
Pt
£/ : -
y
O o0
) S N
QXN
/8 :
Xf -
)
Q
\

L2

0 250 500 km
N

2l A i

Figure 1. Region of interest of Monte, Puna and High Andes initiative.

1.3.1. Monte

East of the Andes lies the Monte ecoregion, encompassing arid and semi-arid steppes. This
vast ecoregion is dominated by shrubs and perennial grasses, well-adapted to the region's
low rainfall and hot summers. A network of rivers and streams originating in the Andes
provides vital water sources for the Monte's socio ecosystems. The Monte's arid steppes
have traditionally been used for extensive livestock ranching, primarily sheep and goats.



However, overgrazing can lead to desertification, posing a threat to the region's delicate
ecological balance. Monte's aridity generally restricts intensive agriculture. However,
pockets of intensive agriculture exist particularly near the foothills of the Andes where
rivers provide a reliable source of water for irrigation. These areas might support
vineyards, fruit orchards, alfalfa production, horticulture, pecan groves, walnut orchards,
or other woody cultivated areas. Most towns and cities rely on oases or rivers for their
water needs.

1.3.2. Puna

High up in the Andes, nestled between its peaks and foothills, lies the Puna, a vast plateau
characterized by a cold, dry climate. It experiences frigid temperatures, strong winds, and
intense solar radiation. Precipitation is scarce. The Puna's unique ecological conditions
have fostered the development of a specialized ecosystem dominated by low-growing
grasses, cushion plants, and dwarf shrubs. The Puna is an important source of freshwater,
feeding rivers that flow eastward. The Puna's high-altitude steppes have long supported
communities of indigenous herders who raise llamas, alpacas, and vicufias for their wool
and meat. The Puna is also rich in mineral resources, leading to mining activity. Some
communities boast a long history of cultivation of small plots using water from rivers fed
by glacial meltwater. Large-scale urbanization is also restricted by water scarcity. Existing
towns and cities in the Puna rely on rivers or underground water sources for their needs.

1.3.3. High Andes

Nestled along the western edge of Argentina, the High Andes mountain range stretches for
thousands of kilometers, forming a formidable natural barrier. Many of its imposing peaks
exceed 6,000 m in elevation. The region is characterized by a harsh, high-altitude climate
with frigid temperatures, strong winds, and significant variations in temperature
throughout the day and the year. Precipitation is scarce, falling mainly as snow that
accumulates on the peaks, feeding glaciers and contributing to the region's unique
hydrological systems. The thin air and intense solar radiation pose challenges for most life
forms. However, the High Andes ecosystem has adapted, harboring a variety of specialized
plant and animal species, many of which are endemic to the region. Despite the harsh
conditions, the High Andes have a long history of human use. Indigenous communities
have adapted to the high altitude, practicing a transhumance lifestyle where they move
herds of llamas and alpacas between seasonal pastures at lower and higher elevations.
Mining for precious metals like gold and silver has a long history in the High Andes, but its
environmental consequences are now raising growing concerns and require careful



consideration. Some oasis pockets at lower elevations benefit from meltwater from
glaciers and snowpack, allowing for small-scale agriculture. Urbanization is also limited
due to the extreme conditions. Small settlements exist primarily to support mining activity
or tourism.

1.4. Enhancements Introduced in Collection 2 Compared to Collection 1

Collection 2 improves upon Collection 1 through several key enhancements. First, a
thorough qualitative revision of the training samples was conducted, ensuring that their
thematic accuracy and spatial representativeness meet updated mapping standards. This
was complemented by the application of a quantitative outlier filter to the original training
samples from Collection 1, removing anomalous or inconsistent data samples and
improving the overall reliability of the classification process. The legend was expanded to
allow for a separation of woody vegetation classes, explicitly distinguishing forests from
shrublands to provide greater thematic detail. Additionally, an urban class was
incorporated, developed by a dedicated transversal working group that integrated
information from multiple sources. Finally, the temporal coverage was extended to include
data up to the year 2024, allowing for a more up-to-date representation of land cover and
land use dynamics.

2. Overview of methodological process

The methodological steps of Monte, Puna and High Andes initiative Collection 2 are
presented in Figure 2 and detailed below. Annual Landsat mosaics based on yearly periods
and the spectral feature inputs derived from the Landsat bands (i.e., feature space) to run
a random forest-based classification were generated by the MapBiomas Brazil team. The
Monte, Puna and High Andes team defined the classes of land use or cover to be mapped
(hereafter, map legend) and the subregions of the region of interest. Through visual
interpretation and phenological signatures analysis by the whole team, temporally stable
training samples were acquired for each class and subregion. The training data set was
derived from the spectral feature inputs over the samples, and a pre-classification was
generated with a random forest classifier. The pre-classification process was used to
identify stable areas. Within these areas, stable samples were randomly selected through
stratification, ensuring representativeness based on the relative area of each subregion. A
new random forest classifier was run based on random, stratified, stable samples.
Interpreters further collected complementary samples in areas or for classes where errors
were evident, which were added to the stable samples for a new classification. Land



use/land cover patterns were evaluated and corrected using reclassification rules designed
specifically for classes and regions where errors were detected. Following that, spatial and
temporal filters were applied to remove classification noise and stabilize the
classifications.
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Figure 2. Methodological scheme of Monte, Puna and High Andes initiative Collection 2.

3. Remote Sensing Data



3.1. Landsat Collection

The imagery dataset used in Monte, Puna and High Andes initiative Collection 2 was
obtained from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic Mapper
Plus (ETM+), and the Operational Land Imager and Thermal Infrared Sensor (OLI-TIRS), on
board of Landsat 5, Landsat 7 and Landsat 8, respectively. The Landsat imagery collections
with 30-pixel resolution were accessible via Google Earth Engine, and sourced by NASA
and USGS. Monte, Puna and High Andes initiative Collection 2 has used Tier 1 from USGS
and surface reflectance (SR), which underwent radiometric calibration and
orthorectification correction based on ground control points and a digital elevation model
to account for pixel co-registration and correction of displacement errors. The scenes were
used for covering the entire region, where each of them is totally or partially within the
area. For each year we used images from the best Landsat mission available:

1985 to 1999 — Landsat 5
2000 to 2002 — Landsat 7
2003 to 2011 — Landsat 5
2012 - Landsat 7

2013 to 2024 — Landsat 8

3.2. Landsat Mosaics

Landsat cloud-free composites were obtained from images distributed throughout the
whole year. The cloud/shadow removal script applied leverages Landsat’s own quality
assessment (QA) band and the GEE median reducer. When used, QA values can improve
data integrity by indicating which pixels might be affected by artifacts or subject to cloud
contamination (USGS, 2017). In simple terms, the algorithm rejects values that are too
bright (e.g., clouds) or too dark (e.g., shadows) and picks the median pixel value in each
band for a specific year.

3.3. Feature space

The feature space for classifying the classes of interest for the Monte, Puna and High
Andes initiative Collection 2 comprises a set of 31 variables including the original Landsat
bands, spectral indices, and fractional and textural information derived from these bands
(Table 1). The variables of the feature space were the same for all subregions.

Reducers (i.e., temporal aggregation algorithms) were used to generate temporal features
such as:

e Median - Median of the NDVI pixel values considering all the images of each year.



e Median_dry = median of the lower quartile of the NDVI pixel values.
e Median_wet = median of the higher quartile of the NDVI pixel values.
e Amplitude = amplitude of variation of the index over each year.

e stdDev = standard deviation of all pixel values over each year.

Table 1. List of spectral bands, fractions and indices comprising the feature space.

Variable Description
Slope Derived from the SRTM digital elevation model.
Green median texture Average green texture extracted from the monthly mosaic.
GCVI median wet Median of the wet period of the green chlorophyll vegetation index.
GCVI median Annual median green chlorophyll vegetation index.
GCVI median dry Median dry period green chlorophyll vegetation index.

Blue median Annual median of the blue band.

EVI2 median Annual median of the Enhanced Vegetation Index.

Green median Annual median of the green band.

Red median Annual red band median.

NIR median Annual median of the near-infrared band.
SWIR1 median Annual median shortwave infrared band 1.
SWIR2 median Annual median shortwave infrared band 2.

GV medlan Median of Green Vegetation.

GVS median Median of the Green Vegetation Shade index.

NPV median Median of Non-Photosynthetic Vegetation.

Soil median Median Soil Fraction.

Shade median Median shade fraction.

NDFI median Annual median of Normalized Difference Fraction Index.

NDFI median wet Median of the Wet period of NDFI.

NDVI median Annual median of Normalized Difference Vegetation Index.
NDVI median dry Median of Normalized Difference Vegetation Index dry period.
NDVI median wet Median of Normalized Difference Vegetation Index wet period.

NDWI median Annual median of Normalized Difference Water Index.

NDWI median wet Median of Normalized Difference Water Index for wet season.

SAVI median Median of Soil-adjusted Vegetation Index.

SETI median Median of Savanna Ecosystem Fraction Index.

NDFI stdDev Annual standard deviation of the Normalized Difference Fraction Index.

SEFI stdDev Annual standard deviation of Savanna Ecosystem Fraction Index.

Soil stdDev Annual standard deviation of Soil fraction.

NPV stdDev Annual standard deviation of Non-Photosynthetic Vegetation.

NDWI amp Annual amplitude of Normalized Difference Water Index.




4, Classification of LULC

The production of the Collection 2, with land use and land cover annual maps for the
period 1985-2025 in each subregion, included a) manually drawn polygons of LULC classes
temporally non-variable, based on the visual interpretation of annual Landsat composite
images and temporal behavior of spectral indices, b) stable samples generated from LULC
preliminary classifications, c) balancing of samples based on areal representativeness of
each class, d) collection of complementary samples, e) annual LULC classifications, f)
application of temporal and spatial post classification filters.

4.1. Legend

The supervised classification of the Landsat mosaics for Monte, Puna and High Andes
initiative Collection 2 aimed to individualize a set of twelve land use and land cover classes
(Table 2). The classes were carefully considered to ensure the accurate representation of
the region's land cover types and involved the knowledge of the local experts for their
selection. Urban areas were integrated via superposition, based on a product developed
by a dedicated transversal working group.

Table 2. Land use and land cover (LULC) categories considered for the classification of
Landsat mosaics for the Monte, Puna and High Andes initiative.

Legend ID Description
Closed forests 3 Areas W|th natural vegetation dominated by trees,
with a coverage greater than 65%.
Open forests 4 Areas with natural vegetation dominated by trees,
P with a coverage between 20 and 65%.
Areas with natural vegetation dominated by
I hrubl
Closed shrublands 66 shrubs, with a coverage greater than 65%.
Areas with natural vegetation dominated by
hrubl 77
Open shrublands shrubs, with a coverage between 20 and 65%.
Areas with natural vegetation dominated by
Sparse wooded shrublands 45 shrubs, with a coverage between 5 and 20%.
Areas with natural vegetation dominated by
Grasslands 12 | herbaceous plants, where woody plant coverage is
less than 20% or nonexistent.
Flooded Grassland or 11 Areas with natural vegetation influenced by a
Non-woody floodable vegetation shallow water table or dependent on flooding.




Areas with anthropogenic vegetation composed of
a heterogeneous association, varying over time
Mosaic of agriculture and 71 and space, including agriculture, pastures,
pasture vegetables, and fruit trees. This cover is typically
small-scale and commonly found in irrigated areas,
although not exclusively so.

Areas covered by woody (trees or shrubs)

Woody Cultivated 9 . .
anthropogenic vegetation.

Non vegetated areas 25 Areas with vegetation coverage less than 5%.

Areas permanently covered by water. It includes
Superficial water 33 streams, rivers, ponds, and natural or artificial
lakes.

Areas with permanent and superficial snow or ice
Ice and snow on surface 34 coverage. It does not include debris-covered
glaciers.

Attributed to missing values, shadows, or other
Not observed 27 errors that may arise during the classification
process.

4.2. Classification algorithm, training samples and parameters

Classifications were performed yearly, using a Random Forest algorithm (Breiman, 2001)
available in Google Earth Engine, running 70 iterations (random forest trees). Stable
training samples for each region were defined following a strategy of using random pixels
for which the land use and land cover remained the same for at least 35 of the 40 years,
so-named “stable samples”. The stable areas were identified through annual preliminary
classifications trained with random pixels selected from manually drawn polygons. For this,
false-color composites of the Landsat mosaics for all 40 years as backdrop and graphs with
the temporal behavior of spectral indices per pixel were used to establish the LULC class.

4.3. Preliminary classification

From manually drawn polygons, a subset between 200 and 2000 pixels per class was
randomly selected and used as training areas to classify each of the 40 years with the
Random Forest algorithm, running 70 iterations. A total of 40 yearly preliminary
classifications were obtained and the frequency with which a pixel was classified with the
same LULC class was calculated to define the stable areas.

4.4. Sample outlier filtering



To identify the presence of outlier samples, we quantified the rarity of each one using the
Isolation Forest algorithm on the attribute space defined by the 33 synthetic bands used to
train samples. The algorithm progressively isolates observations in random decision trees,
and those that require fewer splits to become isolated obtain a lower score, indicating
greater rarity. Since the class distribution is not homogeneous across zones—particularly
in areas where certain covers are very poorly represented—we grouped the data into
three broad regions (metaregions) that combine several subregions: High Monte (6-8),
Low Monte (9—-11), and Puna and Andes (1-5). In this way, each sample is evaluated
against a more representative regional distribution, avoiding biases related to the local
scarcity of classes. Based on the scores, we applied a statistical rule to define the threshold
that separates “typical” from “atypical” samples: using the skewness of the score
distribution for each region—year—class combination, thresholds were set at 2%, 5%, and
10% of the samples for sets ranging from more symmetric (skewness > —0.5) to less
symmetric (skewness < —1), respectively.

4.5, Stable samples

The identification of stable areas to extract random pixels or “stable samples” was based
on a criterion of minimum frequency aiming to ensure their confidence for use as training
areas. Each pixel should be classified with the same LULC class at least 35 times in the
period 1985-2024 to be considered as stable, i.e. a pixel should remain with that class for a
minimum of 35 years to be eligible as a stable sample. A layer of pixels with a stable
classification along the 40 years was then generated by applying such a threshold. A
minimum of 200 samples was used for rare classes that do not cover at least 10% of the
region area and a maximum of 2000 samples for the most abundant classes.

4.6. Complementary samples

The need for complementary samples was evaluated by visual inspection and by
comparing the output of the preliminary classification with both Landsat and
high-resolution images available in GEE. Complementary sample collection was also done
by drawing polygons within the Google Earth Engine Code Editor. The same concept of
stable samples was applied, interpreting the false-color composites of the Landsat mosaics
for all 40 years for drawing polygons. Based on the knowledge of each region, polygon
samples from each class were collected and the number of random points in these
polygons were defined to balance the samples.



4.7. Final classification

Final classification was performed for every year, with subregions merged into three
metaregions, employing both stable and complementary samples. All years used the same
subset of samples and each classifier was run for the same mosaic of the year that was
classified.

5. Post-processing

Due to the pixel-based classification method and the long temporal series, a list of
post-classification procedures was applied. The post-classification process includes the
remapping of certain areas where obvious errors were identified, and the application of
gap-filling, temporal and spatial filters.

5.1. Gap fill filter

A no-data values (“gaps”) filter was applied. Because theoretically the no-data values are
not allowed, it was replaced by the temporally nearest valid classification. In this
procedure, if no “future” valid position was available, then the no-data value was replaced
by its previous valid class. Therefore, gaps should only exist if a given pixel has been
permanently classified as no-data throughout the entire temporal domain.

5.2 Remapping

In areas where obvious classification errors were identified, manual remapping was
conducted. Additionally, pixels classified as water in areas where the slope exceeds 15°
were reclassified as "Not observed," as this is a typical outcome of topographical shadows.

5.3. First spatial filter

The spatial filter overcomes the “salt and pepper effect” removing isolated pixels or
groups of pixels. A mode filter was applied, by calculating the majority class in the direct
neighbors of the focal pixel. It was based on the "connectedPixelCount" function. Native to
the GEE platform, this function locates connected components (neighbors) that share the
same pixel value. Thus, only pixels that did not share connections to a predefined number
of identical neighbors were considered isolated and subject to the mode filter. In this filter,
at least 11 connected pixels were needed to reach the minimum connection value.
Consequently, the minimum mapping unit is directly affected by the spatial filter applied,
and it was defined as 11 pixels (~1 ha).



5.4. Temporal filters

The temporal filter uses the subsequent years to replace pixels that have spurious
transitions. The first process looks across a 3-year moving window to correct any value
that changes in the middle year and changes back to the original class at the end year. This
process was applied per class sequentially in the following order: [21, 77, 45,9, 12, 11, 25,
66, 4, 3, 33]. The second and third processes are similar to the first one, but encompass 4-
and 5-year moving windows, respectively, correcting all years falling in between. Temporal
filters were not applied to the Water and Snow classes, considering their inherent
interannual variability. The moving windows were not applied either over 1985 and 2024,
for which end-year filters were applied. The end-year filters look for areas that were
classified differently in 1985 in comparison to 1986 and 1987 and then correct the 1985
value. Also, these filters look for pixel values in 2024 that differ from its class in 2022 and
2023. In these cases, if the class value in 2024 is not the same as that in 2022 and 2023, it
is then converted to the class present in those years.

5.5. Last spatial filter

After applying the filters detailed above, a spatial filter with the same parameters as the
first one was applied to remove potential spatial artifacts produced by the temporal filters.
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