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1. Introduction

1.1. Scope and content of the document

The objective of this document is to describe the theoretical basis, justification and

methods applied to produce annual maps of land use and land cover (LULC) of theMonte,

Puna and High Andes MapBiomas initiative from 1985 to 2022 (Collection 1). This

collection was integrated into Collection 1 of Argentina to generate a characterization of

the whole country. The document presents a general description of the satellite image

processing, the feature inputs, and the step-by-step process carried out to obtain the

annual classifications.

1.2. Overview

The MapBiomas initiative combines people, algorithms, satellite information and

large-scale processing in a methodology that has revolutionized the operational large-scale

generation of LULC maps. MapBiomas provides an ideal environment to enhance and

share skills and abilities by collaborators from different locations and perspectives but with

the mutual core value of learning by doing. Thanks to Google Earth Engine and open

source technology it was possible to access and process large-scale datasets of satellite

imagery such as the one generated by the MapBiomas project.

MapBiomas collections aim to contribute to developing a fast, reliable, collaborative, and

low-cost method to process large-scale datasets and generate historical time series of land

use and land cover annual maps. All data, classification maps, codes, statistics, and further

analyses are openly accessible through the MapBiomas Platform. This is possible thanks to

i) the Google Earth Engine platform, which provides access to data, image processing,

standard algorithms, and the cloud computing facilities; ii) the freely available Landsat

time-series dataset; and iii) the MapBiomas collaborative network of organizations and

experts that share knowledge and mapping tools. MapBiomas maps are an evolving

product and subsequent collections will be available in the future.

1.3. Region of Interest

The Monte, Puna and High Andes initiative was created to produce annual land use and

land cover (LULC) maps for the Argentine territories west of Mapbiomas Chaco and

Pampas and north of Patagonia. The region of interest encompasses a total of 495,123

km², including most of the Puna, Low and High Monte, and High Andes ecoregions, as well

as the northern part of the Patagonian steppes (Burkart et al., 1999; Olson et al., 2001).



The study area was divided into 11 subregions to minimize confusion between samples

and classes, and to ensure a more balanced distribution of samples and results (Figure 1).

Figure 1. Region of interest ofMonte, Puna and High Andes initiative.

1.2.1 Monte

East of the Andes lies the Monte ecoregion, encompassing arid and semi-arid steppes. This

vast ecoregion is dominated by shrubs and perennial grasses, well-adapted to the region's

low rainfall and hot summers. A network of rivers and streams originating in the Andes

provides vital water sources for the Monte's socio ecosystems. The Monte's arid steppes

have traditionally been used for extensive livestock ranching, primarily sheep and goats.



However, overgrazing can lead to desertification, posing a threat to the region's delicate

ecological balance. Monte's aridity generally restricts intensive agriculture. However,

pockets of intensive agriculture exist particularly near the foothills of the Andes where

rivers provide a reliable source of water for irrigation. These areas might support

vineyards, fruit orchards, alfalfa production, horticulture, pecan groves, walnut orchards,

or other woody cultivated areas. Most towns and cities rely on oases or rivers for their

water needs.

1.2.2. Puna

High up in the Andes, nestled between its peaks and foothills, lies the Puna, a vast plateau

characterized by a cold, dry climate. It experiences frigid temperatures, strong winds, and

intense solar radiation. Precipitation is scarce. The Puna's unique ecological conditions

have fostered the development of a specialized ecosystem dominated by low-growing

grasses, cushion plants, and dwarf shrubs. The Puna is an important source of freshwater,

feeding rivers that flow eastward. The Puna's high-altitude steppes have long supported

communities of indigenous herders who raise llamas, alpacas, and vicuñas for their wool

and meat. The Puna is also rich in mineral resources, leading to mining activity. Some

communities boast a long history of cultivation of small plots using water from rivers fed

by glacial meltwater. Large-scale urbanization is also restricted by water scarcity. Existing

towns and cities in the Puna rely on rivers or underground water sources for their needs.

1.2.3 High Andes

Nestled along the western edge of Argentina, the High Andes mountain range stretches for

thousands of kilometers, forming a formidable natural barrier. Many of Its imposing peaks

exceed 6,000 m in elevation. The region is characterized by a harsh, high-altitude climate

with frigid temperatures, strong winds, and significant variations in temperature

throughout the day and the year. Precipitation is scarce, falling mainly as snow that

accumulates on the peaks, feeding glaciers and contributing to the region's unique

hydrological systems. The thin air and intense solar radiation pose challenges for most life

forms. However, the High Andes ecosystem has adapted, harboring a variety of specialized

plant and animal species, many of which are endemic to the region. Despite the harsh

conditions, the High Andes have a long history of human use. Indigenous communities

have adapted to the high altitude, practicing a transhumance lifestyle where they move

herds of llamas and alpacas between seasonal pastures at lower and higher elevations.

Mining for precious metals like gold and silver has a long history in the High Andes, but its

environmental consequences are now raising growing concerns and require careful



consideration. Some oasis pockets at lower elevations benefit from meltwater from

glaciers and snowpack, allowing for small-scale agriculture. Urbanization is also limited

due to the extreme conditions. Small settlements exist primarily to support mining activity

or tourism.

2. Overview of methodological process

The methodological steps of Monte, Puna and High Andes initiative Collection 1 are

presented in Figure 2 and detailed below. Annual Landsat mosaics based on yearly periods

and the spectral feature inputs derived from the Landsat bands (i.e., feature space) to run

a random forest-based classification were generated by the MapBiomas Brazil team. The

Monte, Puna and High Andes team defined the classes of land use or cover to be mapped

(hereafter, map legend) and the subregions of the region of interest. Through visual

interpretation and phenological signatures analysis by the whole team, temporally stable

training samples were acquired for each class and subregion. The training data set was

derived from the spectral feature inputs over the samples, and a pre-classification was

generated with a random forest classifier. The pre-classification process was used to

identify stable areas. Within these areas, stable samples were randomly selected through

stratification, ensuring representativeness based on the relative area of each subregion. A

new random forest classifier was run based on random, stratified, stable samples.

Interpreters further collected complementary samples in areas or for classes where errors

were evident, which were added to the stable samples for a new classification. Land

use/land cover patterns were evaluated and corrected using reclassification rules designed

specifically for classes and regions where errors were detected. Following that, spatial and

temporal filters were applied to remove classification noise and stabilize the

classifications.



Figure 2. Methodological scheme ofMonte, Puna and High Andes initiative Collection 1.

3. Remote Sensing Data

3.1. Landsat Collection

The imagery dataset used in Monte, Puna and High Andes initiative Collection 1 was

obtained from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic Mapper

Plus (ETM+), and the Operational Land Imager and Thermal Infrared Sensor (OLI-TIRS), on

board of Landsat 5, Landsat 7 and Landsat 8, respectively. The Landsat imagery collections

with 30-pixel resolution were accessible via Google Earth Engine, and sourced by NASA



and USGS. Monte, Puna and High Andes initiative Collection 1 has used Tier 1 from USGS

and surface reflectance (SR), which underwent radiometric calibration and

orthorectification correction based on ground control points and digital elevation model to

account for pixel co-registration and correction of displacement errors. The scenes were

used for covering the entire region, where each of them is totally or partially within the

area. For each year we used images from the best Landsat mission available:

● 1985 to 1999 – Landsat 5

● 2000 to 2002 – Landsat 7

● 2003 to 2011 – Landsat 5

● 2012 – Landsat 7

● 2013 to 2022 – Landsat 8

3.2. Landsat Mosaics

Landsat cloud-free composites were obtained from images distributed throughout the

whole year. The cloud/shadow removal script applied leverages Landsat’s own quality

assessment (QA) band and the GEE median reducer. When used, QA values can improve

data integrity by indicating which pixels might be affected by artifacts or subject to cloud

contamination (USGS, 2017). In simple terms, the algorithm rejects values that are too

bright (e.g., clouds) or too dark (e.g., shadows) and picks the median pixel value in each

band for a specific year.

3.3. Feature space

The feature space for classifying the classes of interest for the Monte, Puna and High

Andes initiative Collection 1 comprises a set of 31 variables including the original Landsat

bands, spectral indices, and fractional and textural information derived from these bands

(Table 1). The variables of the feature space were the same for all subregions.

Reducers (i.e., temporal aggregation algorithms) were used to generate temporal features

such as:

●Median - Median of the NDVI pixel values considering all the images of each year.

●Median_dry = median of the lower quartile of the NDVI pixel values.

●Median_wet = median of the higher quartile of the NDVI pixel values.

● Amplitude = amplitude of variation of the index over each year.

● stdDev = standard deviation of all pixel values over each year.



Table 1. List of spectral bands, fractions and indices comprising the feature space.

Variable Description

Slope Derived from the SRTM digital elevation model.

Green median texture Average green texture extracted from the monthly mosaic.

GCVI median wet Median of the wet period of the green chlorophyll vegetation index.

GCVI median Annual median green chlorophyll vegetation index.

GCVI median dry Median dry period green chlorophyll vegetation index.

Blue median Annual median of the blue band.

EVI2 median Annual median of the Enhanced Vegetation Index.

Green median Annual median of the green band.

Red median Annual red band median.

NIR median Annual median of the near-infrared band.

SWIR1 median Annual median shortwave infrared band 1.

SWIR2 median Annual median shortwave infrared band 2.

GV medlan Median of Green Vegetation.

GVS median Median of the Green Vegetation Shade index.

NPV median Median of Non-Photosynthetic Vegetation.

Soil median Median Soil Fraction.

Shade median Median shade fraction.

NDFI median Annual median of Normalized Difference Fraction Index.

NDFI median wet Median of the Wet period of NDFI.

NDVI median Annual median of Normalized Difference Vegetation Index.

NDVI median dry Median of Normalized Difference Vegetation Index dry period.

NDVI median wet Median of Normalized Difference Vegetation Index wet period.

NDWI median Annual median of Normalized Difference Water Index.

NDWI median wet Median of Normalized Difference Water Index for wet season.

SAVI median Median of Soil-adjusted Vegetation Index.

SETI median Median of Savanna Ecosystem Fraction Index.

NDFI stdDev Annual standard deviation of the Normalized Difference Fraction Index.

SEFI stdDev Annual standard deviation of Savanna Ecosystem Fraction Index.

Soil stdDev Annual standard deviation of Soil fraction.

NPV stdDev Annual standard deviation of Non-Photosynthetic Vegetation.

NDWI amp Annual amplitude of Normalized Difference Water Index.

4. Classification of LULC

The production of the Collection 1, with land use and land cover annual maps for the

period 1985-2022 in each subregion, included a) manually drawn polygons of LULC classes

temporally non-variable, based on the visual interpretation of annual Landsat composite



images and temporal behavior of spectral indices, b) stable samples generated from LULC

preliminary classifications, c) balancing of samples based on areal representativeness of

each class, d) collection of complementary samples, e) annual LULC classifications, f)

application of temporal and spatial post classification filters.

4.1. Legend

The supervised classification of the Landsat mosaics for Monte, Puna and High Andes

initiative Collection 1 aimed to individualize a set of ten land use and land cover classes

(Table 2). The classes were carefully considered to ensure the accurate representation of

the region's land cover types and involved the knowledge of the local experts for their

selection.

Table 2. Land use and land cover (LULC) categories considered for the classification of

Landsat mosaics for theMonte, Puna and High Andes initiative.

Legend ID Description Hex Code Color

1.1 Closed wooded vegetation 3

Areas with natural vegetation
dominated by trees, shrubs, or a
mixture of both, with a coverage

greater than 65%.

#1f8d49

1.2 Open wooded vegetation 4

Areas with natural vegetation
dominated by trees, shrubs, or a
mixture of both, with a coverage

between 20 and 65%.

#7dc975

1.3. Sparse wooded vegetation 45

Areas with natural vegetation
dominated by trees, shrubs, or a
mixture of both, with a coverage

between 5 and 20%.

#807a40

2.1 Grasslands 12

Areas with natural vegetation
dominated by herbaceous
plants, where woody plant
coverage is less than 20% or

nonexistent.

#d6bc74

2.2 Flooded Grassland or
Non-wooded floodable
vegetation

11
Areas with natural vegetation
influenced by a shallow water

table or dependent on flooding.
#519799



3.1 Mosaic of agriculture and
pasture

21

Areas with anthropogenic
vegetation composed of a
heterogeneous association,
varying over time and space,

including agriculture, pastures,
vegetables, and fruit trees. This
cover is typically small-scale and
commonly found in irrigated

areas, although not exclusively
so.

#ffefc3

3.2 Woody Cultivated 9
Areas covered by woody (trees

or shrubs) anthropogenic
vegetation.

#7a5900

4. Non vegetated areas 25
Areas with vegetation coverage

less than 5%.
#d4271e

5.1 River, lake or ocean 33

Areas permanently covered by
water. It includes streams, rivers,
ponds, and natural or artificial

lakes.

#2532e4

5.2. Ice and snow on surface 34

Areas with permanent and
superficial snow or ice coverage.

It does not include
debris-covered glaciers.

#93dfe6

6. Not observed 27

Attributed to missing values,
shadows, or other errors that

may arise during the
classification process.

#ffffff

4.2. Classification algorithm, training samples and parameters

Classifications were performed yearly, using a Random Forest algorithm (Breiman, 2001)

available in Google Earth Engine, running 70 iterations (random forest trees). Stable

training samples for each region were defined following a strategy of using random pixels

for which the land use and land cover remained the same for at least 33 of the 38 years,

so-named “stable samples”. The stable areas were identified through annual preliminary

classifications trained with random pixels selected from manually drawn polygons. For this,

false-color composites of the Landsat mosaics for all 38 years as backdrop and graphs with

the temporal behavior of spectral indices per pixel were used to establish the LULC class.



4.3. Preliminary classification

From manually drawn polygons, a subset between 200 and 2000 pixels per class was

randomly selected and used as training areas to classify each of the 38 years with the

Random Forest algorithm, running 70 iterations. A total of 38 yearly preliminary

classifications were obtained and the frequency with which a pixel was classified with the

same LULC class was calculated to define the stable areas.

4.4. Stable samples

The identification of stable areas to extract random pixels or “stable samples” was based

on a criterion of minimum frequency aiming to ensure their confidence for use as training

areas. Each pixel should be classified with the same LULC class at least 33 times in the

period 1985-2022 to be considered as stable, i.e. a pixel should remain with that class for a

minimum of 33 years to be eligible as a stable sample. A layer of pixels with a stable

classification along the 38 years was then generated by applying such a threshold. A

minimum of 200 samples was used for rare classes that do not cover at least 10% of the

region area and a maximum of 2000 samples for the most abundant classes.

4.5. Complementary samples

The need for complementary samples was evaluated by visual inspection and by

comparing the output of the preliminary classification with both Landsat and

high-resolution images available in GEE. Complementary sample collection was also done

by drawing polygons within the Google Earth Engine Code Editor. The same concept of

stable samples was applied, interpreting the false-color composites of the Landsat mosaics

for all 38 years for drawing polygons. Based on the knowledge of each region, polygon

samples from each class were collected and the number of random points in these

polygons were defined to balance the samples.

4.6. Final classification

Final classification was performed for every year, with subregions merged into one region,

employing both stable and complementary samples. All years used the same subset of

samples and each classifier was run for the same mosaic of the year that was classified.



5. Post-processing

Due to the pixel-based classification method and the long temporal series, a list of

post-classification procedures was applied. The post-classification process includes the

remapping of certain areas where obvious errors were identified, and the application of

gap-filling, temporal, spatial and frequency filters.

5.1. Gap fill filter

A no-data values (“gaps”) filter was applied. Because theoretically the no-data values are

not allowed, it was replaced by the temporally nearest valid classification. In this

procedure, if no “future” valid position was available, then the no-data value was replaced

by its previous valid class. Therefore, gaps should only exist if a given pixel has been

permanently classified as no-data throughout the entire temporal domain.

5.2 Remapping

5.2.1 Closed to open natural woodlands

In each of the 38 years, an unsupervised classification of 5 classes was performed using

the EVI and NDVI-related bands from the feature space within all pixels classified as Closed

Natural Woodlands. Using a control set of 22 sites, it was determined for each year which

class represented the areas with the highest woody density. These areas were maintained

as Closed Natural Woodlands, while the others were reclassified as Open Natural

Woodlands.

5.2.2 Other remapping

In areas where obvious classification errors were identified, manual remapping was

conducted. Additionally, pixels classified as water in areas where the slope exceeds 15°

were reclassified as "Not observed," as this is a typical outcome of topographical shadows.

5.3. First spatial filter

The spatial filter overcomes the “salt and pepper effect” removing isolated pixels or

groups of pixels. A mode filter was applied, by calculating the majority class in the direct

neighbors of the focal pixel. It was based on the "connectedPixelCount" function. Native to

the GEE platform, this function locates connected components (neighbors) that share the

same pixel value. Thus, only pixels that did not share connections to a predefined number



of identical neighbors were considered isolated and subject to the mode filter. In this filter,

at least 11 connected pixels were needed to reach the minimum connection value.

Consequently, the minimum mapping unit is directly affected by the spatial filter applied,

and it was defined as 11 pixels (~1 ha).

5.4. Temporal filters

The temporal filter uses the subsequent years to replace pixels that have spurious

transitions. The first process looks across a 3-year moving window to correct any value

that changes in the middle year and changes back to the original class at the end year. This

process was applied per class sequentially in the following order: [4, 45, 12, 11, 9, 21, 25,

27, 3]. The second and third processes are similar to the first one, but encompass 4- and

5-year moving windows, respectively, correcting all years falling in between. Temporal

filters were not applied to the Water and Snow classes, considering their inherent

interannual variability. The moving windows were not applied either over 1985 and 2022,

for which end-year filters were applied. The end-year filters look for areas that were

classified differently in 1985 in comparison to 1986 and 1987 and then correct the 1985

value. Also, these filters look for pixel values in 2022 that differ from its class in 2020 and

2021. In these cases, if the class value in 2022 is not the same as that in 2020 and 2021, it

is then converted to the class present in those years.

5.5. Closed and open natural woodlands dominance filter

In pixels where only closed or open natural woodlands were observed over the 38 years,

the frequency with which a pixel was classified as closed or open natural woodland was

quantified, and the pixel was reclassified to the highest frequency class value. The result of

these frequency filters is a more stable classification of these classes. Another important

result is the removal of noise in the first and last years of the classification.

5.6. Last spatial filter

After applying the filters detailed above, a spatial filter with the same parameters as the

first one was applied to remove potential spatial artifacts produced by the temporal filters.
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